Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Viruses ; 15(5)2023 05 10.
Artigo em Inglês | MEDLINE | ID: covidwho-20244237

RESUMO

Evolutionary and functional studies suggested that the emergence of the Omicron variants can be determined by multiple fitness trade-offs including the immune escape, binding affinity for ACE2, conformational plasticity, protein stability and allosteric modulation. In this study, we systematically characterize conformational dynamics, structural stability and binding affinities of the SARS-CoV-2 Spike Omicron complexes with the host receptor ACE2 for BA.2, BA.2.75, XBB.1 and XBB.1.5 variants. We combined multiscale molecular simulations and dynamic analysis of allosteric interactions together with the ensemble-based mutational scanning of the protein residues and network modeling of epistatic interactions. This multifaceted computational study characterized molecular mechanisms and identified energetic hotspots that can mediate the predicted increased stability and the enhanced binding affinity of the BA.2.75 and XBB.1.5 complexes. The results suggested a mechanism driven by the stability hotspots and a spatially localized group of the Omicron binding affinity centers, while allowing for functionally beneficial neutral Omicron mutations in other binding interface positions. A network-based community model for the analysis of epistatic contributions in the Omicron complexes is proposed revealing the key role of the binding hotspots R498 and Y501 in mediating community-based epistatic couplings with other Omicron sites and allowing for compensatory dynamics and binding energetic changes. The results also showed that mutations in the convergent evolutionary hotspot F486 can modulate not only local interactions but also rewire the global network of local communities in this region allowing the F486P mutation to restore both the stability and binding affinity of the XBB.1.5 variant which may explain the growth advantages over the XBB.1 variant. The results of this study are consistent with a broad range of functional studies rationalizing functional roles of the Omicron mutation sites that form a coordinated network of hotspots enabling a balance of multiple fitness tradeoffs and shaping up a complex functional landscape of virus transmissibility.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , Estabilidade Proteica , Mutação , Glicoproteína da Espícula de Coronavírus/genética , Ligação Proteica
2.
J Mol Biol ; 435(13): 168128, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2306096

RESUMO

SARS-CoV-2 virus spike (S) protein is an envelope protein responsible for binding to the ACE2 receptor, driving subsequent entry into host cells. The existence of multiple disulfide bonds in the S protein makes it potentially susceptible to reductive cleavage. Using a tri-part split luciferase-based binding assay, we evaluated the impacts of chemical reduction on S proteins from different virus variants and found that those from the Omicron family are highly vulnerable to reduction. Through manipulation of different Omicron mutations, we found that alterations in the receptor binding module (RBM) are the major determinants of this vulnerability. Specifically we discovered that Omicron mutations facilitate the cleavage of C480-C488 and C379-C432 disulfides, which consequently impairs binding activity and protein stability. The vulnerability of Omicron S proteins suggests a mechanism that can be harnessed to treat specific SARS-CoV-2 strains.


Assuntos
Glicoproteína da Espícula de Coronavírus , Humanos , Bioensaio , Mutação , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Oxirredução , Estabilidade Proteica
3.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2305250

RESUMO

Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable among these variants. A systematic mutational scanning of the inter-protomer interfaces in the spike trimers revealed a group of conserved structural stability hotspots that play a key role in the modulation of functional dynamics and are also involved in the inter-protomer couplings through local contacts and interaction networks with the Omicron mutational sites. The results of mutational scanning provided evidence that BA.2.75 trimers are more stable than BA.2 and comparable in stability to the BA.1 variant. Using dynamic network modeling of the S Omicron BA.1, BA.2, and BA.2.75 trimers, we showed that the key network mediators of allosteric interactions are associated with the major stability hotspots that are interconnected along potential communication pathways. The network analysis of the BA.1, BA.2, and BA.2.75 trimers suggested that the increased thermodynamic stability of the BA.2.75 variant may be linked with the organization and modularity of the residue interaction network that allows for allosteric communications between structural stability hotspots and Omicron mutational sites. This study provided a plausible rationale for a mechanism in which Omicron mutations may evolve by targeting vulnerable sites of conformational adaptability to elicit immune escape while maintaining their control on balancing protein stability and functional fitness through robust allosteric communications with the stability hotspots.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Subunidades Proteicas , Estabilidade Proteica , Mutação
4.
Phys Chem Chem Phys ; 24(29): 17723-17743, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1947641

RESUMO

Dissecting the regulatory principles underlying function and activity of the SARS-CoV-2 spike protein at the atomic level is of paramount importance for understanding the mechanisms of virus transmissibility and immune escape. In this work, we introduce a hierarchical computational approach for atomistic modeling of allosteric mechanisms in the SARS-CoV-2 Omicron spike proteins and present evidence of a frustration-based allostery as an important energetic driver of the conformational changes and spike activation. By examining conformational landscapes and the residue interaction networks in the SARS-CoV-2 Omicron spike protein structures, we have shown that the Omicron mutational sites are dynamically coupled and form a central engine of the allosterically regulated spike machinery that regulates the balance and tradeoffs between conformational plasticity, protein stability, and functional adaptability. We have found that the Omicron mutational sites at the inter-protomer regions form regulatory hotspot clusters that control functional transitions between the closed and open states. Through perturbation-based modeling of allosteric interaction networks and diffusion analysis of communications in the closed and open spike states, we have quantified the allosterically regulated activation mechanism and uncover specific regulatory roles of the Omicron mutations. Atomistic reconstruction of allosteric communication pathways and kinetic modeling using Markov transient analysis reveal that the Omicron mutations form the inter-protomer electrostatic bridges that operate as a network of coupled regulatory switches that could control global conformational changes and signal transmission in the spike protein. The results of this study have revealed distinct and yet complementary roles of the Omicron mutation sites as a network of hotspots that enable allosteric modulation of structural stability and conformational changes which are central for spike activation and virus transmissibility.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Regulação Alostérica , Humanos , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Estabilidade Proteica , Subunidades Proteicas , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Biomolecules ; 12(7)2022 07 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1928473

RESUMO

In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the spike complexes that can affect the pattern of mutational escape. A network-based perturbation approach for mutational profiling of allosteric residue potentials revealed how antibody binding can modulate allosteric interactions and identified allosteric control points that can form vulnerable sites for mutational escape. The results show that the protein stability and binding energetics of the SARS-CoV-2 spike complexes with the panel of ultrapotent antibodies are tolerant to the effect of Omicron mutations, which may be related to their neutralization efficiency. By employing an integrated analysis of conformational dynamics, binding energetics, and allosteric interactions, we found that the antibodies that neutralize the Omicron spike variant mediate the dominant binding energy hotpots in the conserved stability centers and allosteric control points in which mutations may be restricted by the requirements of the protein folding stability and binding to the host receptor. This study suggested a mechanism in which the patterns of escape mutants for the ultrapotent antibodies may not be solely determined by the binding interaction changes but are associated with the balance and tradeoffs of multiple local and global factors, including protein stability, binding affinity, and long-range interactions.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/genética , Humanos , Conformação Molecular , Mutação , Ligação Proteica , Estabilidade Proteica , SARS-CoV-2/genética
6.
J Chem Inf Model ; 62(8): 1956-1978, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1773912

RESUMO

The structural and functional studies of the SARS-CoV-2 spike protein variants revealed an important role of the D614G mutation that is shared across many variants of concern (VOCs), suggesting the effect of this mutation on the enhanced virus infectivity and transmissibility. The recent structural and biophysical studies provided important evidence about multiple conformational substates of the D614G spike protein. The development of a plausible mechanistic model that can explain the experimental observations from a more unified thermodynamic perspective is an important objective of the current work. In this study, we employed efficient and accurate coarse-grained simulations of multiple structural substates of the D614G spike trimers together with the ensemble-based mutational frustration analysis to characterize the dynamics signatures of the conformational landscapes. By combining the local frustration profiling of the conformational states with residue-based mutational scanning of protein stability and network analysis of allosteric interactions and communications, we determine the patterns of mutational sensitivity in the functional regions and sites of variants. We found that the D614G mutation may induce a considerable conformational adaptability of the open states in the SARS-CoV-2 spike protein without compromising the folding stability and integrity of the spike protein. The results suggest that the D614G mutant may employ a hinge-shift mechanism in which the dynamic couplings between the site of mutation and the interprotomer hinge modulate the interdomain interactions, global mobility change, and the increased stability of the open form. This study proposes that mutation-induced modulation of the conformational flexibility and energetic frustration at the interprotomer interfaces may serve as an efficient mechanism for allosteric regulation of the SARS-CoV-2 spike proteins.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Mutação , Estabilidade Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
J Virol ; 96(7): e0010022, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1728835

RESUMO

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Here, we investigated in ferrets the replication and transmission of swine H1N1 isolates P4 and G15, whose majority population had decreased polymerase activity and poor hemagglutinin (HA) stability, respectively. For both isolates, a minor variant was selected and transmitted in ferrets. Polymerase-enhancing variant PA-S321 airborne-transmitted and propagated in one ferret. HA-stabilizing variant HA1-S210 was selected in all G15-inoculated ferrets and was transmitted by contact and airborne routes. With an efficient polymerase and a stable HA, the purified minor variant G15-HA1-S210 had earlier and higher peak titers in inoculated ferrets and was recovered at a higher frequency after airborne transmission than P4 and G15. Overall, HA stabilization played a more prominent role than polymerase enhancement in the replication and transmission of these viruses in ferrets. The results suggest pandemic risk-assessment studies may benefit from deep sequencing to identify minor variants with human-adapted traits. IMPORTANCE Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility). Here, we used swine IAV isolates of the gamma lineage as a model to investigate the importance of HA stability and polymerase activity in promoting replication and transmission in ferrets. These are emerging viruses that bind to both α-2,6- and α-2,3-linked receptors. Using isolates containing mixed populations, a stabilized HA was selected within days in inoculated ferrets. An enhanced polymerase was also selected and propagated after airborne transmission to a ferret. Thus, HA stabilization was a stricter requirement, yet both traits promoted transmissibility. Knowing the viral traits needed for pandemic potential, and the relative importance of each, will help identify emerging viruses of greatest concern.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Animais , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Estabilidade Proteica , Suínos
8.
J Med Virol ; 94(4): 1641-1649, 2022 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1718410

RESUMO

Emerging severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants, especially those of concern, may have an impact on the virus's transmissibility and pathogenicity, as well as diagnostic equipment performance and vaccine effectiveness. Even though the SARS-CoV-2 Delta variant (B.1.617.2) emerged during India's second wave of infections, Delta variants have grown dominant internationally and are still evolving. On November 26, 2021, World Health Organization identified the variant B.1.1.529 as a variant of concern, naming it Omicron, based on evidence that Omicron contains numerous mutations that may influence its behavior. However, the mode of transmission and severity of the Omicron variant remains unknown. We used computational studies to examine the Delta and Omicron variants in this study and found that the Omicron variant had a higher affinity for human angiotensin-converting enzyme 2 (ACE2) than the Delta variant due to a significant number of mutations in the SARS-CoV-2 receptor-binding domain (RBD), indicating a higher potential for transmission. Based on docking studies, the Q493R, N501Y, S371L, S373P, S375F, Q498R, and T478K mutations contribute significantly to high binding affinity with human ACE2. In comparison to the Delta variant, both the entire spike protein and the RBD in Omicron include a high proportion of hydrophobic amino acids such as leucine and phenylalanine. These amino acids are located within the protein's core and are required for structural stability. We observed a disorder-order transition in the Omicron variant between spike protein RBD regions 468-473, and it may be significant in the influence of disordered residues/regions on spike protein stability and binding to ACE2. A future study might investigate the epidemiological and biological consequences of the Omicron variant.


Assuntos
SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , COVID-19/virologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
9.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1700048

RESUMO

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.


Assuntos
SARS-CoV-2/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Regulação Alostérica , Microscopia Crioeletrônica , Conformação Molecular , Simulação de Dinâmica Molecular , Estabilidade Proteica , Glicoproteína da Espícula de Coronavírus/genética
10.
FASEB J ; 36(3): e22199, 2022 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1684809

RESUMO

Spike trimer plays a key role in SARS-CoV-2 infection and vaccine development. It consists of a globular head and a flexible stalk domain that anchors the protein into the viral membrane. While the head domain has been extensively studied, the properties of the adjoining stalk are poorly understood. Here, we characterize the coiled-coil formation and thermodynamic stability of the stalk domain and its segments. We find that the N-terminal segment of the stalk does not form coiled-coils and remains disordered in solution. The C-terminal stalk segment forms a trimeric coiled-coil in solution, which becomes significantly stabilized in the context of the full-length stalk. Its crystal structure reveals a novel antiparallel tetramer coiled-coil with an unusual combination of a-d and e-a-d hydrophobic core packing. Structural analysis shows that a subset of hydrophobic residues stabilizes different coiled-coil structures: trimer, tetramer, and heterohexamer, underscoring a highly polymorphic nature of the SARS-CoV-2 stalk sequence.


Assuntos
COVID-19/virologia , Modelos Moleculares , Domínios Proteicos , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
11.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1667196

RESUMO

Structural and functional studies of the SARS-CoV-2 spike proteins have recently determined distinct functional states of the B.1.1.7 and B.1.351 spike variants, providing a molecular framework for understanding the mechanisms that link the effect of mutations with the enhanced virus infectivity and transmissibility. A detailed dynamic and energetic analysis of these variants was undertaken in the present work to quantify the effects of different mutations on functional conformational changes and stability of the SARS-CoV-2 spike protein. We employed the efficient and accurate coarse-grained (CG) simulations of multiple functional states of the D614G mutant, B.1.1.7 and B.1.351 spike variants to characterize conformational dynamics of the SARS-CoV-2 spike proteins and identify dynamic signatures of the functional regions that regulate transitions between the closed and open forms. By combining molecular simulations with full atomistic reconstruction of the trajectories and the ensemble-based mutational frustration analysis, we characterized how the intrinsic flexibility of specific spike regions can control functional conformational changes required for binding with the host-cell receptor. Using the residue-based mutational scanning of protein stability, we determined protein stability hotspots and identified potential energetic drivers favoring the receptor-accessible open spike states for the B.1.1.7 and B.1.351 spike variants. The results suggested that modulation of the energetic frustration at the inter-protomer interfaces can serve as a mechanism for allosteric couplings between mutational sites and the inter-protomer hinges of functional motions. The proposed mechanism of mutation-induced energetic frustration may result in greater adaptability and the emergence of multiple conformational states in the open form. This study suggested that SARS-CoV-2 B.1.1.7 and B.1.351 variants may leverage the intrinsic plasticity of functional regions in the spike protein for mutation-induced modulation of protein dynamics and allosteric regulation to control binding with the host cell receptor.


Assuntos
COVID-19/metabolismo , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Regulação Alostérica , Sítios de Ligação , COVID-19/patologia , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Estabilidade Proteica , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
12.
Nat Commun ; 12(1): 6977, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: covidwho-1545609

RESUMO

Despite an unprecedented global gain in knowledge since the emergence of SARS-CoV-2, almost all mechanistic knowledge related to the molecular and cellular details of viral replication, pathology and virulence has been generated using early prototypic isolates of SARS-CoV-2. Here, using atomic force microscopy and molecular dynamics, we investigated how these mutations quantitatively affected the kinetic, thermodynamic and structural properties of RBD-ACE2 complex formation. We observed for several variants of concern a significant increase in the RBD-ACE2 complex stability. While the N501Y and E484Q mutations are particularly important for the greater stability, the N501Y mutation is unlikely to significantly affect antibody neutralization. This work provides unprecedented atomistic detail on the binding of SARS-CoV-2 variants and provides insight into the impact of viral mutations on infection-induced immunity.


Assuntos
Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/farmacologia , COVID-19/terapia , COVID-19/virologia , Humanos , Cinética , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Termodinâmica
13.
J Cell Biochem ; 123(2): 417-430, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1525444

RESUMO

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a large number of mutations in its genome have been reported. Some of the mutations occur in noncoding regions without affecting the pathobiology of the virus, while mutations in coding regions are significant. One of the regions where a mutation can occur, affecting the function of the virus is at the receptor-binding domain (RBD) of the spike protein. RBD interacts with angiotensin-converting enzyme 2 (ACE2) and facilitates the entry of the virus into the host cells. There is a lot of focus on RBD mutations, especially the displacement of N501Y which is observed in the UK/Kent, South Africa, and Brazilian lineages of SARS-CoV-2. Our group utilizes computational biology approaches such as immunoinformatics, protein-protein interaction analysis, molecular dynamics, free energy computation, and tertiary structure analysis to disclose the consequences of N501Y mutation at the molecular level. Surprisingly, we discovered that this mutation reduces the immunogenicity of the spike protein; also, displacement of Asn with Tyr reduces protein compactness and significantly increases the stability of the spike protein and its affinity to ACE2. Moreover, following the N501Y mutation secondary structure and folding of the spike protein changed dramatically.


Assuntos
COVID-19/virologia , Mutação de Sentido Incorreto , Pandemias , Mutação Puntual , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/metabolismo , Antígenos Virais/química , Antígenos Virais/imunologia , Sítios de Ligação , Biologia Computacional/métodos , Transferência de Energia , Epitopos/química , Epitopos/imunologia , Evolução Molecular , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
14.
J Biol Chem ; 297(6): 101371, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1487811

RESUMO

The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the subsequent COVID-19 pandemic have visited a terrible cost on the world in the forms of disease, death, and economic turmoil. The rapid development and deployment of extremely effective vaccines against SARS-CoV-2 have seemingly brought within reach the end of the pandemic. However, the virus has acquired mutations. and emerging variants of concern are more infectious and reduce the efficacy of existing vaccines. Although promising efforts to combat these variants are underway, the evolutionary pressures leading to these variants are poorly understood. To that end, here we have studied the effects on the structure and function of the SARS-CoV-2 spike glycoprotein receptor-binding domain of three amino-acid substitutions found in several variants of concern, including alpha (B.1.1.7), beta (B.1.351), and gamma (P.1). We found that these substitutions alter the receptor-binding domain structure, stability, and ability to bind to angiotensin converting enzyme 2, in such a way as to possibly have opposing and compensatory effects. These findings provide new insights into how these variants of concern may have been selected for infectivity while maintaining the structure and stability of the receptor binding domain.


Assuntos
Substituição de Aminoácidos , COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Humanos , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Biomed Res Int ; 2021: 9982729, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1476892

RESUMO

The human transmembrane protease serine 2 (TMPRSS2) protein plays an important role in prostate cancer progression. It also facilitates viral entry into target cells by proteolytically cleaving and activating the S protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the current study, we used different available tools like SIFT, PolyPhen2.0, PROVEAN, SNAP2, PMut, MutPred2, I-Mutant Suite, MUpro, iStable, ConSurf, ModPred, SwissModel, PROCHECK, Verify3D, and TM-align to identify the most deleterious variants and to explore possible effects on the TMPRSS2 stability, structure, and function. The six missense variants tested were evaluated to have deleterious effects on the protein by SIFT, PolyPhen2.0, PROVEAN, SNAP2, and PMut. Additionally, V160M, G181R, R240C, P335L, G432A, and D435Y variants showed a decrease in stability by at least 2 servers; G181R, G432A, and D435Y are highly conserved and identified posttranslational modifications sites (PTMs) for proteolytic cleavage and ADP-ribosylation using ConSurf and ModPred servers. The 3D structure of TMPRSS2 native and mutants was generated using 7 meq as a template from the SwissModeller group, refined by ModRefiner, and validated using the Ramachandran plot. Hence, this paper can be advantageous to understand the association between these missense variants rs12329760, rs781089181, rs762108701, rs1185182900, rs570454392, and rs867186402 and susceptibility to SARS-CoV-2.


Assuntos
COVID-19/genética , Mutação de Sentido Incorreto , Serina Endopeptidases/química , Serina Endopeptidases/genética , Sítios de Ligação , Biologia Computacional/métodos , Evolução Molecular , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Filogenia , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Estabilidade Proteica , Serina Endopeptidases/metabolismo
16.
Viruses ; 13(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1471002

RESUMO

West Java Health Laboratory (WJHL) is one of the many institutions in Indonesia that have sequenced SARS-CoV-2 genome. Although having submitted a large number of sequences since September 2020, however, these submitted data lack advanced analyses. Therefore, in this study, we analyze the variant distribution, hotspot mutation, and its impact on protein structure and function of SARS-CoV-2 from the collected samples from WJHL. As many as one hundred sixty-three SARS-CoV-2 genome sequences submitted by West Java Health Laboratory (WJHL), with collection dates between September 2020 and June 2021, were retrieved from GISAID. Subsequently, the frequency and distribution of non-synonymous mutations across different cities and regencies from these samples were analyzed. The effect of the most prevalent mutations from dominant variants on the stability of their corresponding proteins was examined. The samples mostly consisted of people of working-age, and were distributed between female and male equally. All of the sample sequences showed varying levels of diversity, especially samples from West Bandung which carried the highest diversity. Dominant variants are the VOC B.1.617.2 (Delta) variant, B.1.466.2 variant, and B.1.470 variant. The genomic regions with the highest number of mutations are the spike, NSP3, nucleocapsid, NSP12, and ORF3a protein. Mutation analysis showed that mutations in structural protein might increase the stability of the protein. Oppositely, mutations in non-structural protein might lead to a decrease in protein stability. However, further research to study the impact of mutations on the function of SARS-CoV-2 proteins are required.


Assuntos
Genoma Viral/genética , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , COVID-19/patologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Hotspot de Doença , Feminino , Humanos , Indonésia , Masculino , Simulação de Acoplamento Molecular , Mutação/genética , Fosfoproteínas/genética , Estabilidade Proteica , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Viroporinas/genética , Sequenciamento Completo do Genoma
17.
J Biol Chem ; 297(4): 101238, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1433455

RESUMO

The D614G mutation in the spike protein of SARS-CoV-2 alters the fitness of the virus, leading to the dominant form observed in the COVID-19 pandemic. However, the molecular basis of the mechanism by which this mutation enhances fitness is not clear. Here we demonstrated by cryo-electron microscopy that the D614G mutation resulted in increased propensity of multiple receptor-binding domains (RBDs) in an upward conformation poised for host receptor binding. Multiple substates within the one RBD-up or two RBD-up conformational space were determined. According to negative staining electron microscopy, differential scanning calorimetry, and differential scanning fluorimetry, the most significant impact of the mutation lies in its ability to eliminate the unusual cold-induced unfolding characteristics and to significantly increase the thermal stability under physiological pH. The D614G spike variant also exhibited exceptional long-term stability when stored at 37 °C for up to 2 months. Our findings shed light on how the D614G mutation enhances the infectivity of SARS-CoV-2 through a stabilizing mutation and suggest an approach for better design of spike protein-based conjugates for vaccine development.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Varredura Diferencial de Calorimetria , Microscopia Crioeletrônica , Humanos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Temperatura
18.
J Biol Chem ; 297(4): 101202, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1428100

RESUMO

Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.


Assuntos
Complexo Antígeno-Anticorpo , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Alinhamento de Sequência , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
J Biol Chem ; 297(4): 101208, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1415532

RESUMO

Emergence of new severe acute respiratory syndrome coronavirus 2 variants has raised concerns related to the effectiveness of vaccines and antibody therapeutics developed against the unmutated wildtype virus. Here, we examined the effect of the 12 most commonly occurring mutations in the receptor-binding domain of the spike protein on its expression, stability, activity, and antibody escape potential. Stability was measured using thermal denaturation, and the activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding to the human angiotensin-converting enzyme 2 and to neutralizing human antibody CC12.1, respectively. Our results show that mutants differ in their expression levels. Of the eight best-expressed mutants, two (N501Y and K417T/E484K/N501Y) showed stronger affinity to angiotensin-converting enzyme 2 compared with the wildtype, whereas four (Y453F, S477N, T478I, and S494P) had similar affinity and two (K417N and E484K) had weaker affinity than the wildtype. Compared with the wildtype, four mutants (K417N, Y453F, N501Y, and K417T/E484K/N501Y) had weaker affinity for the CC12.1 antibody, whereas two (S477N and S494P) had similar affinity, and two (T478I and E484K) had stronger affinity than the wildtype. Mutants also differ in their thermal stability, with the two least stable mutants showing reduced expression. Taken together, these results indicate that multiple factors contribute toward the natural selection of variants, and all these factors need to be considered to understand the evolution of the virus. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that variant.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Reações Antígeno-Anticorpo , COVID-19/patologia , COVID-19/virologia , Células HEK293 , Humanos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Domínios Proteicos/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Temperatura de Transição
20.
J Chem Inf Model ; 61(9): 4152-4155, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1392764

RESUMO

The emergence of variants of SARS-CoV-2 with mutations in their spike protein are a major cause for concern for the efficacy of vaccines and control of the pandemic. We show that mutations in the spike protein of SARS-CoV-2 are selecting for amino acid changes that result in a more thermodynamically stable protein than expected from background. We suggest that the computationally efficient analysis of mutational stability may aid in early screening of variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Estabilidade Proteica , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA